
62 

Acta Cryst. (1996). A52, 62-76 

Symmetry Analysis of Interface Triple Junctions 

G. P. DIMITRAKOPULOS AND TH. KARAKOSTAS 

Department of Physics, Solid State Section 313-1, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece. 
E-mail: karakostas@olymp.ccf .auth.gr 

(Received 8 March 1995; accepted 10 August 1995) 

Abstract  

The symmetry properties of triple junctions formed by 
crystal interfaces are presented using colour crystal- 
lography. Triple junctions are treated as composites of 
three crystals and are studied using the principle of 
superposition of symmetries. The conclusions are used 
for the understanding of the equivalences and invariances 
within one tricrystal composite and for studying such 
composites from the point of view of interfacial 
connectivity. A dissymmetrization procedure is estab- 
lished through which tricrystals equivalent by symmetry 
and their ways of coexistence can be found. Also, the 
relations between the symmetry properties of the 
tricrystal and those of the three bicrystals participating 
in the junction are given. Emphasis is placed on a 
particular class of composities that are termed variant 
constituted tricystals. In these, two out of three bicrystals 
belong to orientation variants of the same dichromatic 
pattern. Such composites are usual in polycrystals and 
can exhibit interesting symmetry properties. The ordinary 
symmetry and antisymmetry in the third bicrystal can be 
predicted using a given algorithm. Appropriate examples 
are given to illustrate the application of the analysis. 

I. Introduction 

The problem of crystal interface triple junctions (TJs) has 
been a subject of interest for many years owing to their 
importance in affecting the behaviour and properties of 
polycrystalline materials. TJs can be classified as 
homophase or heterophase. Homophase TJs are the 
grain boundary TJs, i.e. TJs in which the three 
participating crystals have the same structure. In 
heterophase TJs, only two out of three crystal compo- 
nents have the same structure. Therefore, such TJs are 
composed of two heterophase interfaces and one 
homophase interface. Heterophase TJs are often observed 
(or constructed) in epitaxic deposition, precipitation and 
other phase-transformation processes. For example, 
epitaxy has been used for the fabrication of particular 
grain boundaries in the epitaxic deposit (Dahmen & 
Thangarai, 1993). In these cases, the composite of grain 
boundary plus epitaxic interface is a heterophase TJ. The 
grain boundary (GB) is the homophase boundary that 
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emanates from the junction of two variants of the epitaxic 
interface. Analogous is the case of internal twinning of 
precipitates that is observed with the twins emanating 
from the interphase boundary (Hugo & Muddle, 1989). 

A lot of work has concentrated on grain-boundary TJs 
and a number of phenomena related to their properties 
have been studied. These include material mechanical 
behaviour (Hashimoto, Fujii & Miura, 1987; Sisanbaev 
& Valiev, 1992), wetting phenomena (indekeu & Nikas, 
1991), diffusion effects (Mikhailovskii, Rabukhin & 
Velikodnaya, 1991; Randle, 1993) and intergranular 
corrosion (Palumbo & Aust, 1988). 

Grain-boundary TJs have also been classified accord- 
ing to their disclination character into U lines and I lines 
(Bollmann, 1984, 1988). I lines do not possess disclina- 
tion character. The disclination character of U lines arises 
from the lack of nodal balancing of adjoining GB 
dislocation arrays. In addition, it is possible that TJ lines 
may exhibit partial dislocation character. Such a 
dislocation can be introduced, for example, if the crystal 
components are also related by rigid-body displacements 
that cannot be mutually accommodated at the TJ line. 

It has been recognised that, in the coexistence of three 
crystals, symmetry may play an important role. However, 
previous work has concentrated on homophase TJs 
formed by crystals in coincidence-site-lattice (CSL) 
relative orientations. In such orientations, a lattice of 
common sites can always be found if the lattices of any 
two of the participating crystals are imagined to 
interpenetrate. The geometric properties of special CSL 
TJs have been analysed by Bleris & Karakostas (1989). 
Their results have been applied to experimental observa- 
tions in polycrystalline Si (Komninou, Doni, Karakostas, 
Bleris & Delavignette, 1991). 

The effort for the symmetry analysis of TJs cannot be 
regarded as complete. The role of symmetry in non-CSL 
TJs as well as heterophase TJs has not been elucidated. In 
addition, in CSL descriptions, only lattices and not actual 
crystal structures are considered. The question therefore 
remains as to what are the symmetry properties of any 
given TJ when the structures and relative orientations of 
the three crystals have been taken into account. It is 
expected that any symmetry that is shared by all three 
participating crystals will also characterize the TJ. Such 
common symmetry will express the invariances of all 
physical properties in a TJ. In addition, it may be 
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possible to obtain equivalence relations between the three 
crystals. 

A second question is whether TJs that are equivalent 
by symmetry can be found. Such TJs will be variants 
obtained through systematic symmetry analysis. In a 
polycrystal, a number of such TJ variants can occur and 
their coexistence is possible. When equivalent-by- 
symmetry TJs coexist (for example at a node of TJs), 
what information can be obtained from symmetry as to 
how this coexistence is accommodated? If such questions 
can be answered, important conclusions will be obtained 
towards an a priori understanding of interfacial con- 
nectivity and the significance of TJs to polycrystal 
topology (Randle, 1993, 1994). 

In this work, it will be shown that a unified approach 
can be adopted to study all types of TJs regardless of 
whether they are of the homophase or heterophase type. 
This can be accomplished by treating TJs as composite 
systems of three crystals mutually separated by three 
interfaces. Such composites will be termed tricrystals. 
General rules can be obtained to express equivalences 
and invariances in these systems. All equivalent-by- 
symmetry TJs can be predicted and their coexistence can 
be considered. A geometrically necessary defect content, 
other than that arising from nodal balancing of disloca- 
tion arrays, can also be predicted and assigned to 
particular TJs. 

The study of composite systems can be facilitated 
through the use of the principle of superposition of 
symmetries (Shubnikov & Koptsik, 1974). According to 
this principle, the symmetry of a heterogeneous compo- 
site is the symmetry that is common in all its constituents 
depending on their relative arrangement. It follows that 
the composite will usually exhibit symmetry lower than 
that of its parts. This reduction of symmetry is known as 
dissymmetrization. Any symmetry that is suppressed by 
dissymmetrizafion will then relate equivalent variants of 
the same composite. In a homogeneous composite, it is 
possible to have additional symmetry, i.e., apart from the 
common symmetry, there may also exist symmetry 
operations that relate the constituents of the composite 
and express equivalence between them. This is referred 
to as symmetrization. 

Composite systems can be studied under the frame- 
work of generalized colour symmetry. A two-colour 
(dichromatic) approach has been employed for the case 
of bicrystals, i.e. composites of two crystals separated by 
one interface (Kalonji & Cahn, 1982; Pond & Vlachavas, 
1983). Each crystal has been assigned a different colour, 
i.e. black or white. The bicrystal symmetry is expressed 
by a group in which two types of symmetry operation are 
represented. The first is ordinary symmetry operations, 
i.e. operations that leave invariant both the white and the 
black component and therefore the bicrystal as well. The 
second is antisymmetry (colour-reversing) operations 
that relate the black and white components. For such 
systems, a dissymmetrization procedure has been 

established through which the symmetry of a given 
bicrystal as well as all equivalent bicrystal variants can 
be found. The symmetry analysis can then give 
information on the ways such variants can coexist (Pond, 
1989). 

For a tricrystal composite, it is natural to assume that 
the appropriate framework to use is that of three-colour 
crystallography. Such an approach will be developed in 
this work. A different colour will be assigned to each 
crystal component of the composite, say white, black and 
red. Then it is possible to distinguish three types of 
symmetry operations characterizing such a composite, 
i.e. ordinary, colour-exchange and mixed operations 
(Dahmen & Thangarai, 1993). Colour-exchange opera- 
tions express equivalence between all three components, 
i.e. they involve a cyclic permutation of colour (white-to- 
black-to-red-to-white or vice versa). Mixed symmetry 
operations relate two of the three components (e.g. black- 
to-red) while leaving the third (e.g. white) invariant. 

The symmetry group of a composite is obtained by 
dissymmetrizing a fundamental or embracing symmetry 
group. This is a group expressing the maximum possible 
symmetry associated with a given composite. For 
bicrystals, it has been established that the embracing 
group is the one characterizing the symmetry of the 
holosymmetric dichromatic pattern. This is the three- 
dimensional pattern that is constructed if we consider the 
black and white lattices to interpenetrate in space, having 
a common origin. The bicrystal is regarded as having 
been created from such a pattern by a sequence of 
imaginary steps. In each step, the symmetry is reduced 
and hence variants arise. It is easy to extend such an 
analysis for the case of tricrystals. The same sequence of 
dissymmetrization steps can be followed if we associate 
the embracing group for the composite with a holosym- 
metric tricrystal pattern, i.e. a three-dimensional compo- 
site constructed if we consider all three lattices to 
interpenetrate having a common origin. Establishing a 
dissymmetrization methodology similar to that used in 
bicrystallography is useful considering that, in a 
tricrystal, three bicrystals coexist. So, in order to 
understand interfacial connectivity, it is necessary to 
obtain a connection between the symmetry properties of 
a tricrystal and a bicrystal. It should be noticed that 
ordinary and colour symmetry operations in a composite 
can be found by a simple inspection of the relative 
orientation of its parts, making the matter trivial. 
However, this gives partial information since it is the 
embracing group that describes the highest symmetry 
associated with an imaginary medium from which the 
composite is developed. Thus, dissymmetrization of this 
group is the necessary analysis for a complete study of 
the symmetry properties and their influence in the defect 
content of such systems. 

Special attention will be paid to a particular class of 
tricrystals that we term variant constituted tricrystals 
(VCTs). By this expression, we mean tricrystals in which 
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two out of three bicrystals originate from orientation 
variants of one dichromatic pattem. Our interest is based 
on their frequent occurrence in polycrystals and in a 
number of processes, such as phase transformations. For 
example, consider the well known case of 273-273-279 
CSL TJs (the multiplicity 27 expresses the reciprocal 
density of coincident-lattice nodes in a CSL). The two 
273 bicrystals originate from dichromatic pattem variants. 
In materials with low stacking-fault energy, such 
bicrystals usually have {111} interfacial orientations 
and are abundant. It is reasonable to assume that, in a 
polycrystalline material, all 273 { 111 } variants have equal 
probability of existing since they all have low energy. 
Then, it is also highly probable that such variants will 
often form VCTs and so the number of 279 bicrystals will 
also be large. Symmetry constraints are imposed by the 
273{111} variants on the 279 bicrystals. These can be 
established so that they are known a priori. In general, 
the effect of low-energy interfaces on polycrystal 
topology can be largely considered through their 
coexistence in VCTs, as well as through the coexistence 
of VCTs. In addition, the information obtained on VCTs 
can facilitate the study of tricrystals that are directly 
related to them, as will be demonstrated. In the CSL case, 
such tricrystals are those in which the three bicrystals 
have multiplicities related by a power law (i.e. 27i : f n  
bicrystals, for example 273-Z9-2727). The symmetry 
relations obtained can also aid the design and fabrication 
of VCTs, for example, by epitaxy, as in the method of 
Dahmen & Thangarai (1993). 

The structure of the paper is divided into three main 
sections. The first section involves the characterization of 
the symmetry of tricrystal composite systems by 
examining the interrelationships of the participating 
crystals. For this purpose, the principle of superposition 
of symmetries is used. It is shown how suppressed 
symmetry can be used to predict equivalent tricrystal 
variants and their possible ways of coexistence. The 
second section is devoted to VCTs. It focuses on the 
symmetry of the third bicrystal introduced between 
bicrystals originating from dichromatic pattern orienta- 
tion variants and examines how this symmetry is affected 
by the variants. The final section gives appropriate 
examples that are studied using the analysis of the 
previous two sections. 

2. Symmetry of tricrystal composites 

2.1. The dissymmetrization procedure in dichromatic 
bicrystallography 

The analysis of the symmetry of a tricrystal can be 
formulated following a dissymmetrization procedure 
similar to that used in bicrystallography. For this reason, 
and because certain results concerning the symmetry of a 
single bicrystal are necessary for the study of a tricrystal, 

this procedure is reviewed here in brief. Detailed 
analyses can be found elsewhere (Kalonji & Cahn, 
1982; Gratias & Portier, 1982; Pond & Vlachavas, 1983). 

Using the notation of International Tables for 
Crystallography (Hahn, 1983), let us denote by ~(2) 
and ~(tz) the space groups of symmetry operations of the 
white (2) and black (/z) lattice, respectively. ~(2) and 
~(/z) are each isomorphic to one of the 14 crystal- 
lographic space groups of lattices, although not necessa- 
rily the same. Let us now assume that, when referred to 
the coordinate system of crystal (2), ~(2) is represented 
by the isomorphic group of 4 x 4 matrices {~V(/~)i}. For 
lattices, the matrix representations of symmetry opera- 
tions W(2)i = (W(2)/,w(2)i) are either of the form 
(W(2)i, o) for point symmetry operations or (I, t(2)i) for 
translation operations. Similarly, let the space group 
O(/z) be represented by the isomorphic group {W(/z)/} 
when referred to the coordinate system of crystal (/z). 

An afffme transformation of the coordinate system can 
be expressed as 79 = (P, p), where P is the linear part of 
the transformation expressing a change in length and/or 
orientation of the basis vectors and p a shift of origin 
corresponding to a possible rigid-body translation 
between the two components. The linear part P can 
always be expressed in the form of a product P = RD, 
where R corresponds to a rotation and D to a pure strain. 
For the purpose of our analysis, it will always be 
assumed that the relative rotation is not the identity (R#I).  
Let us assume that 79 is defined so that the vector bases 
are related by (a(/z), b(/z), c(/z)) = (a(2), b(2), c(2))P. 
For a given bicrystal, the set of all equivalent-by- 
symmetry descriptions of this transformation is given by 
79W(lz)i . Any such transformation can be used for 
obtaining the symmetry of a bicrystal. The imaginary 
steps for doing so are given below. 

We consider initially the construction of the holosym- 
metric dichromatic pattem. We imagine the lattices of the 
two crystals to interpenetrate, assuming a common origin 
(i.e. p =o) .  Let the symmetry of this composite be 
expressed by the space group O'(p) (p denotes pattem). 
This is the embracing group of the bicrystal (Pond & 
Vlachavas, 1983) and, in the general case, it is a two- 
colour group. The actual bicrystal symmetry is always 
expressed by a subgroup of this group. 

We next denote by ~ (p )  the ordinary symmetry 
subgroup of he embracing group ( ~ ( p ) _  O'(p)), i.e. 
the group of symmetry operations that leave invariant 
both crystal components. This is a subgroup of the space 
groups of the two lattices (~(p)___~(2),~(/z)) 
isomorphic to the group of matrices satisfying the 
expression W(P)i = W(2)i -- 79oW(/z)j79o 1 , where 
790 = (P,o). Symmetry operations belonging to ~(p) 
are rotations and mirrors for which the corresponding 
geometric elements are parallel in the two crystals, as 
well as parallel translations of the same length. Also, the 
inversion is always an element of ~ (p)  since its matrix is 
always invariant under the above transformation by 79o . 
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If antisymmetry is not present, then ~ ( p ) -  ~¢(p), 
whereas, if it is (i.e. in homophase bicrystals), ~ ' (p )  can 
be found as the extension of ~ (p )  by a symmetrizing 
point group containing the identity and one second-order 
antisymmetry operation. The rules for the introduction of 
antisymmetry have been given by Vlachavas (1984). 

For the analysis of TJs, the point symmetry is 
particularly important Therefore, a few comments on it 
are necessary at this point. Let us denote by Q(2) and 
Q(/z) the point groups corresponding to the two lattices 
[i.e. Q ( 2 ) c  ¢~(2), Q ( / x ) c  ~(/x)]. As known, each is 
isomorphic to one of the crystallograp_hic point groups 1, 
2/m, mmm, 4/mmm, 3m, 6/mmm, m3m. Then, if Q(p) 
is the point group corresponding to the dichromatic pattern 
[i.e. Q(p) ___ ~(p)] ,  it can o_nly be isomorphic to one of 
the centrosymmetric groups 1, 2/m, mmm, 4/m, 4/mmm, 
3, 3m, 6/m and 6/mmm. The rest of the centrosymmetric 
groups are overruled for relative rotations. The above 
groups can only be extended to the antisymmetric groups 
2'/m', m'mm', 4/mm'm', 4'/mmm', 8'/mmm', 3m', 
6'/m'mm', 6/mm'm' and 12'/mmm', respectively. 

As we have seen, Q(p) will always contain at least the 
identity and the operation of inversion. Let us now 
examine for which relative rotations, corresponding to R, 
Q(p) can contain additional symmetry operations. As 
known, any symmetry operation corresponds to a 
geometric symmetry element such as a rotation axis or 
mirror plane. For operations belonging to Q(p), the 
corresponding geometric elements must be invariant 
under the relative rotation of the two crystals. Such 
geometric elements are symmetry axes parallel to the 
axis of relative rotation as well as mirror planes normal to 
this axis. Also, under a relative rotation, axes or mirrors 
for which the corresponding symmetry operations belong 
to different equivalence classes may be brought into 
coincidence. For crystal symmetries, this is possible only 
for second-order symmetry operations [i.e. when Q(p) is 
isomorphic to one of the groups mmm, 4/mmm, 6/mmm]. 
Finally, by a 180 ° relative rotation, symmetry axes 
perpendicular to the axis of relative rotation are left 
invariant, as well as mirrors to the planes of which the 
axis of relative rotation belongs. For example, in cubic 
crystals such 180 ° rotations must be around axes {hk0) 
(for (001} coincidence), (hhk} (for (110) coincidence) or 
(211) (for (111) coincidence). The above arguments 
have been written for proper rotations, but can easily be 
extended for improper ones. 

For homophase composites, the 2/m ordinary 
symmetry corresponds to a (110) coincidence in cubic 
and tetragonal crystals and to a (112.0) or (1100) 
coincidence in hexagonal crystals. The mmm symmetry 
corresponds to second-order axes (100), (011}, (011) 
(90 ° (110) rotation). A coincidence with axes of type 
(100) only corresponds to a 45 ° (100) rotation 
(symmetry 4/mmm). The groups 3m and 6/mmm also 
correspond to special rotations, i.e. 60 ° (111) and 30 ° 
[0001 ], respectively. 

A coset analysis of Q(2) with respect to Q(p) 
determines the variants of Q(p) in Q(2) and therefore 
the orientation variants of the holosymmetric dichromatic 
pattern inside the white lattice. If we denote by W(,,],)i 
a symmetry operation of Q(2) corresponding to 
~V(~)i ~--- (W(,~)i, o),  such an analysis can be written as 

Q(2) = W(2)v Q(p  ) U W(2)v2Q(p ) u . . .  u W(R)vQ(p), 

(1) 

where W(2)v ' = I  (the identity) and W(2)v" • Q(2), 
W(2)v" ¢ Q(p),  x = 2 . . . . .  n, are the variant generating 
group elements, which in the following will be 
abbreviated as VGEs. The latter are symmetry opera- 
tions corresponding to the matrix representations 
W(2)v, = (W(2)v, o). A similar analysis can be written 
with respect to Q(/z). If the coset analysis (1) was written 
with respect to space-group symmetries, translational 
variants of the dichromatic pattern would also have been 
obtained. 

The VGEs express the dissymmetry (or suppressed 
symmetry) and interrelate the orientation variants. This 
suppression is due to the relative arrangement of the two 
lattices in space or to there being no corresponding 
operation in Q(/z). 

There are also cases where one or both crystals can be 
considered as transformation products of phases of 
higher symmetry. The parent phase lattice may not be 
the same for both components. The interpenetration of 
such phases should be considered in obtaining the 
embracing group as they can lead to additional orienta- 
tion variants due to different possible orientations of the 
black or white lattice within the parent phases. Other 
authors have analysed the issue (Van Tendeloo & 
Amelinckx, 1974; Guymont, Gratias, Portier & Fayard, 
1976). 

After the embracing group of the bicrystal has been 
obtained, the second step in the dissymmetrization 
process is to obtain the space group characterizing the 
composite that is formed if the actual crystal structures 
(i.e. the lattice complexes) interpenetrate. This composite 
is known as the dichromatic complex. The space groups 
¢~(2) s and ~(/z) s of the crystal structures are considered 
(each being isomorphic to one of the 230 crystal- 
lographic space groups). The ordinary symmetry group 
~(c) (c denotes complex) is obtained through the 
expression "~(C)i = ~/~)('~)i - -  ~D)/V(/'L)j 79-1 for the matrix 
representations of symmetry operations, where now the 
representations of point symmetry operations are of the 
form Wi = (Wi, wi) with w i ~ o for non-symmorphic 
operations. Any relative displacement of the two 
components is also introduced, i.e. the transformation 
79 = (P, p) is used. 

This step enables the treatment of non-holosymmetric 
and/or non-symmorphic crystals. In the non-holosym- 
metric case, there will exist certain symmetry operations 
that leave the lattice invariant but not the lattice complex. 
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Therefore, such operations will not leave invariant the 
dichromatic complex although they may do so for the 
dichromatic pattern. Also, in the non-symmorphic case, 
there may be cases where the lattice symmetry operation 
corresponding to (Wi, O) was a symmetry operation of 
the dichromatic pattern but its non-symmorphic counter- 
part in the lattice complex corresponding to (Wi, wi) does 
not leave invariant the dichromatic complex. This will be 
due to the fact that the vectors w i are not parallel and/or 
not identical in the two crystals. Additional dissymme- 
trization may arise due to the shift in origin p. 

It has been proven (Pond & Vlachavas, 1983) that 
~(c)_@(p) .  As the ordinary symmetry is reduced, 
antisymmetry must be reduced accordingly, i.e. 
~'(c) _.c ~¢(p). Any suppression of symmetry when going 
from the dichromatic pattern to the complex leads to a 
number of variants of the latter in the former. Such 
variants are termed complex variants. 

In the final dissymmetrization step, the bicrystal two- 
dimensional symmetry is obtained by considering the 
interface as a mathematical plane. Only the symmetry 
and antisymmetry operations of @'(c) that leave this 
plane invariant are conserved at this stage. Operations 
that do not do so relate variants of the bicrystal within the 
complex. Such variants have been termed morphological 
variants (Pond & Vlachavas, 1983). 

The symmetry operations relating any two bicrystal 
variants, whether orientation, complex or morphological, 
have been used in order to characterize a priori the 
geometrically necessary interfacial defect accommodat- 
ing their coexistence (Pond, 1989). Since a similar 
dissymmetrization methodology will be adopted below 
for tricrystals, it will be useful to examine whether 
geometrically necessary defects that accommodate the 
coexistence of tricrystal variants can be predicted. 

2.2. Relations between the rotations of  the three crystals 
and construction of  a variant constituted tricrystal 

After giving the dissymmetrization procedure for 
bicrystals, and before proceeding with the appropriate 
analy;is for tricrystals, we recall that, in TJs, the linear 
transformations between the three crystal components (as 
shown in Fig. 1) can always be related by the equation 

P3 =- P2P1-1 (2) 

when expressed in the (2) coordinate frame (providing, 
of course, that there is no rotational closure failure 
between the three crystals). Among the set of equivalent 
transformations relating any two crystals, three transfor- 
mations for which (2) is valid can always be found. 
However, this expression may not be valid for the rigid- 
body translations p [i.e. for operations of the form 
79 = (P, P)]. 

In this subsection, we also consider the construction of 
the particular class of VCTs. According to the definition 
given in the Introduction, such a tricrystal is obtained 

when there is no crystal continuity at the junction of two 
bicrystals originating from orientation variants of the 
same dichromatic pattern (crystal continuity necessitates 
the existence of a disclination at their junction). Then a 
third bicrystal is always geometrically necessary at this 
junction. This approach is in variance to the treatment of 
Pond (1989), where continuity is always assumed. 

The definition of a VCT does not impose any 
conditions on the participating complex variants and 
does not limit the interfacial orientations in the orienta- 
tion variants to be crystallographically equivalent. So this 
is a quite general category of tricrystals. For example, 
consider the well known case of 273-273-279 CSL TJs. 
The 273 bicrystals are obtained from dichromatic pattern 
orientation variants. Usually, these are both 273{111} 
bicrystals, but it has also been observed that one 
273{111} can coexist with one 273{211} bicrystal in the 
same TJ (Garg, Clark & Hirth, 1989). In both cases, we 
have a VCT. 

Let ~(2), ~(/z), ~(e) be the space groups of symmetry 
operations of the three lattices (e, taken from the Greek 
word erithros, denotes the red crystal). In accordance 
with the classification of TJs as either homophase or 
heterophase, we impose the condition ~(/x) -- ~(e) when 
referred to their respective coordinate frames. Let also 
(~'(P)I, ~'(P)2, ~'(P)3 be the embracing groups of the 
three bicrystals (as shown in Fig. 1) and @(P)I, @(P)2, 
@(P)3 the corresponding ordinary symmetry subgroups. 

Then, if bicrystal 2 originates from an orientation 
variant of the dichromatic pattern of bicrystal 1 
corresponding to a VGE W(2)v" C Q(P)I, we have 
@(P)2 ----- W(2)v~ @(P)l W(2)~ 1 [note that the coset 
analysis (1) can easily be extended for space groups if 
translation symmetries are added, without changing the 
number of  orientation variants]. 

For the second bicrystal, we obtain the transformation 
79o2--W()Ov~o~/~2(e)m 1, having linear part P2---- 
W(/q.)v P lw(e)m , where W(2)~, = (W(2)v ,, o) is the 
matrix representation corresponding to the symmetry 
operation W(2)v ,, and l'V(e)m = (W(e)m,O) corresponds 
to a symmetry operation of @(e). [Multiplying 79ol from 
the left by kV(2)~, gives a transformation of bicrystal 2. 
We are then at liberty to follow by multiplying from the 
right by any matrix W(e)m corresponding to a symmetry 

bicrystal 3 

(~t) / ' , _ ~  (El 

bicrystal 1 (~,) bicrystal 2 

Fig. 1. Relative rotations and notations used in the analysis. 
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operation of ~(e).] So (2) is re-written as P3- -  
W(2)v PIW(e)mlP~ -l [or 7'o3 = W(2)vT'o~W(e)m'79o~], 
when expressed in the (2) coordinate frame. This 
relation becomes the Qig expression of Pond (1989) if 
continuity between the bicrystals obtained from dichro- 
matic pattern orientation variants is assumed. Trans- 
formed in the (/z) coordinate system, P3 becomes 
C -- pllP3PI -- P~-Iw(2)v P1W(e)m 1. Then, since there 
is always an operation of ~(/x) such that W(e)m -- W(/z)l 
(when referred to their respective coordinate frames), one 
of the transformations equivalent to C is 

C~ = CW(/z)t = a]-~W(2)~ a 1 (3) 

corresponding to the transformation Co~ = (C~, o). This 
is an expression at the (/z) coordinate system of the 
matrix representation corresponding to the VGE in the 
coordinate system of (2). 

2.3. Ordinary symmetry of the holosymmetric tricrystal 
pattern 

After giving the relations between the three transfor- 
mations, we can proceed with the symmetry analysis of 
tricrystals using the steps that have been described in 
§2.1 and the principle of superposition of symmetries for 
composite systems. Under such a methodology, the 
characteristic symmetry of any tricrystal can be found. 
Since in any tricrystal three bicrystals coexist, using the 
same sequence of dissymmetrization steps for both bi- 
and tricrystals will enable us to obtain a connection 
between their symmetry properties. 

The methodology involves the dissymmetrization of 
an embracing group. Symmetry operations that are 
suppressed at the various steps of dissymmetrization 
relate tricrystal variants. So the steps enable us to 
distinguish between the ways such variants can coexist. 

The first step is the characterization of the symmetry 
of the holosymmetric tricrystal pattern. The space group 
of this composite is given by the general expression 
~'(P)(tricrystal) =- ~i~(p)(tricrystal)Q)S, where subgroup 
~(P)(tricrystal) is the space group of ordinary symmetry 
operations leaving the composite invariant and S is a 
symmetrizing point group of colour-associated opera- 
tions (Q here indicates the operation of symmetrization). 
The space group ~'(P)(tricrystal) is the embracing group of 
the composite. 

In this subsection, we are interested in the ordinary 
symmetry of the tricrystal pattern, i.e. in the group 
~(P)(tricrystal)" For it, the following theorem is self- 
evident. 

Theorem 1: In order to find ~(P){tric stal), it is 
sufficient to consider the in te rsec t ion  ~(pr~(tricrystal ) 
~ ( P ) I  (q ~ ( P ) 2 ,  where ~(P)(tricrystal) ----- ~gi(P)l, ~ (P )2"  

This intersection expresses the addition of the 
dissymmetries in the composite (Shubnikov & Koptsik, 

Table 1. Common intersections for all permissible point 
symmetries of Q(P)I for all crystal systems (with the 
exception of triclinic) in the case of homophase VCTs 

Mono- Ortho- 
clinic rhombic Tetragonal Trigonal Hexagonal Cubic 

Q(P) I (2/m) (mmm) (4/mmm) (3m) (6/mmm) (m3m) 

i i i i i i i 
2/m 21m i, 21m i, 2/m j ,  2/m 
mmm mmm I, mmm 
4/m 4/m i, 4/m 
4/mmm m mm 
3 3 1,3 
3m 2/m 
6/m 6/m 

1974). Any operation that belongs to both ~(P)I and 
~(P)2 will also belong to ~(P)3 and hence to 
~(P)(tricrystal) as well. 

Then, for VCTs, a second theorem is easily obtained 
by considering the expressions for P1, P2 and P3 given in 
§2.2. 

Theorem 2: In VCTs, ~(P)(tricrystal) is the subgroup of 
@(P)I that is invariant under the VGE W(2)v ,. 

Table 1 gives all possible point groups isomorphic to 
Q(P)(tricrystal) __.C ~(P)(tricrystal) for all point groups Q(P)I, 
and for all crystal systems (with the exception of the 
trivial triclinic), in the case of homophase VCTs. This 
table is constructed using the analysis on Q(p) 
permissible symmetries that has been given in §2.1. For 
heterophase VCTs, we may need to dissymmetrize the 
given groups by any operations of Q(2) that are not also 
operations of Q(/z). From this table, we observe that, in 
general, Q(P)(tricrystal) includes operations other than just 
the identity and the inversion only when Q(P)I is 
invariant under the VGE. Then, I~(p)(tricrystal ) ~ Q(P)I- 
There are, however, two cases that do not conform to this 
rule. These correspond to special rotations in the cubic 
system. The first is the 60 ° (111} rotation (intersection 
symmetry 2/m) and the second is the 45 ° (001} rotation 
(intersection symmetry mmm). 

In addition, from Table 1, the following theorem can 
be obtained 

Theorem 3: In VCTs, the necessary condition for the 
existence of intersection symmetry [Q(P)(tricrystal)] great- 
er than 1 is the existence of a second-order VGE. 

This theorem can be proven by considering the 
arguments for the coincidence of geometric symmetry 
elements given in §2.1. Assume that there are some 
symmetry operations of Q(P)1 (other than the identity 
and the inversion) that belong to Q(P)(tricrystal). Since the 
VGE does not belong to Q(P){tricrystal), it cannot corre- 
spond to a 60, 90 or 120 ° rotation axis parallel to the axis 
or mirror normal corresponding to a symmetry operation 
of Q(P)(tricrystal)" However, the geometric elements of the 
operations of Q(P)Ctricrystal) must be left invariant under 
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the operation of the VGE. The only way to satisfy both 
requirements is for the VGE to be a second-order 
symmetry operation. For example, consider a rotation 
symmetry axis corresponding to an operation of Q(P)I. 
This axis will also be invariant under the operation of the 
VGE if the VGE corresponds to a 180 ° rotation around 
an axis perpendicular to it or to a mirror plane to which 
this axis belongs. Then the corresponding symmetry 
operation will belong to I~(p)(tricrystal ). So the conditions 
that have been outlined in §2.1 for relative rotations must 
be combined with the conditions imposed on the VGE if 
the intersection symmetry is to exceed 1. 

The above theorems make straightforward the identi- 
fication of the ordinary symmetry of the tricrystal pattern 
and make possible the a priori construction of high- 
symmetry patterns. Also, by following the rules of 
dissymmetrization, the equivalent patterns (i.e. the 
tricrystal pattern orientation variants) can be determined 
by performing the coset analysis of Q(2) [or 
Q(/z) -- Q(e)] with respect to Q(P)(tricrystal)- Tricrystal 
pattern orientation variants are the analogues of dichro- 
matic pattern orientation variants in the bicrystal case. In 
addition, by performing a coset analysis of Q(p)l with 
respect to Q(P)(tricrystal), we can find all equivalent 
tricrystal patterns that can be constructed by keeping one 
dichromatic pattern [i.e. that corresponding to Q(P)I] 
invariant. The coexistence of tricrystals belonging to 
equivalent tricrystal patterns is possible along nodes of 
TJ lines. This will be illustrated in §4.1.1. 

In the case of VCTs, we see that the total number of 
distinct tricrystal pattems that can be created by the 
pairwise combination of dichromatic pattern orientation 
variants [given by (1)] is ~o--~-~inl 1 i, where n is the 
number of such variants. However, not all of them are 
equivalent by symmetry. The actual number of the latter 
is given by [i]/2, where [0 is the index of t~(p)(tricrystal ) in 
Q(2) (the denominator is introduced because each 
dichromatic pattern orientation variant is considered 
twice). For example, consider the case of Q(P)I --- 4/m 
when Q(2) --- Q(/z) _--- Q(e) ---- m3m. The number of 
dichromatic pattern orientation variants is n - - 6 .  So, 
~p - 15 tricrystal patterns can be created. However, only 
[0/2 = 3 of them have symmetry Q(P)(tricrystal) = 4/m 
(i.e. equivalent tricrystal patterns constructed around 
each of the three (001) directions). The other 12 have 
symmetry i. 

2.4. Colour symmetry of the holosymmetric tricrystal 
pattern 

Once the ordinary symmetry of the tricrystal's 
embracing group has been obtained, we need to consider 
the conditions for the existence of colour symmetry in 
the composite. This will reveal any equivalences between 
the participating crystals (although at this stage the 
equivalences are only between the lattices). For this 
purpose, we need to find the symmetrizing group S. As 

mentioned earlier, there are two kinds of symmetry 
operations that can belong to S, i.e. mixed or colour 
exchange operations. The former are operations relating 
two of the three crystals while leaving the third invariant. 
The latter are operations causing a cyclic permutation of 
the crystals. 

It is obvious that the mixed operations can only be 
selected among the antisymmetry operations of ~ ' (P)I ,  
~'(P)2, ~'(P)3. However, all the antisymmetry opera- 
tions of the bicrystal embracing groups may not belong 
to the tricrystal's embracing group. This has interesting 
consequences from the point of view of predicting 
equivalent tricrystals as will be seen later. At this point, it 
is simply recalled that any suppression of symmetry 
(ordinary or colour) when going from one dissymme- 
trization stage to the next has to lead to a number of 
equivalent composites that are related by this symmetry. 

Three cases can be distinguished in which colour 
symmetry may be present in the tricrystal pattern. 

(a) The mixed symmetry case. The symmetrizing 
group S contains two operations, i.e. the identity and 
one second-order mixed operation involving a permuta- 
tion of the form (~ ~ ~). Obviously, the given permuta- 
tion can only be obtained by a second-order 
antisymmetry operation of ~'(P)3 that, when referred 
to the coordinate system of the white crystal, becomes a 
second-order ordinary operation of (2). So, S is 
isomorphic to the matrix group {Z,~V3} where 
Z = (I, o) and ~ 3  is the matrix representative of the 
mixed symmetry operation. For this case, the following 
theorem can be proven: 

Theorem 4: Mixed symmetry in a tricrystal pattem is 
possible only for VCTs and occurs if, and only if, there 
exists a second-order VGE. 

The above theorem is proven as follows: When a 
symmetry operation of the white crystal is referred to the 
coordinate system of the black crystal, we obtain the 
matrix Cox of (3). If Cox expresses a transformation 
between the black and the red crystals, a VCT is obtained 
according to (2). It is also obvious that the symmetry 
operation of the white crystal cannot belong to Q(P)I, 
otherwise it is impossible to obtain a tricrystal. Hence, it 
must be a VGE. If W(2)v" is the representative of this 
operation of (2), then Co, always represents an 
antisymmetry operation of ~'(P)3 if the VGE is a 
second-order operation. This will be proven in §3. On the 
other hand, if there is no VGE that is of second order, an 
appropriate symmetrizing group S can never be found. 

Mixed symmetry operations can occur in either 
homophase or heterophase VCTs but not in any other 
type of tricrystal. In the isomorphic to S matrix group, 
W'3 = Co~ or, if referred to the white coordinate frame, 
kV3 = W(2)v • Mixed symmetry cases are discussed in 
§~4.1 and 4.2. 

(b) The colour-exchange symmetry case. The symme- 
trizing group S is a three-colour cyclic group isomorphic 
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to 3 (3), involving the crystal permutations 

2 /z e ' 2 /x ' /x e 2 " 

In this case, S is isomorphic to the matrix group 
{27, W ~', W '~-1 }, where double-primed symbols corre- 
spond to colour-exchange operations. All three compo- 
nents can be interrelated only if the composite is 
homogeneous, i.e. in homophase tricrystals. In a 
homophase composite, the transformations 79i do not 
express strain but only rotation. Also, it is obvious that, 
when colour-exchange symmetry exists, all three dichro- 
matic patterns have the same symmetry. It is evident that 
colour-exchange symmetry exists in a tricrystal pattern if 
among the set of equivalent descriptions of the 
transformation 79o~ there exists one corresponding to a 
120 ° rotation and, at the same time, among the set of 
equivalent descriptions of the transformation 7902 there 
exists one corresponding to a 120 ° rotation around the 
same axis but in the opposite sense. If the equivalent to 
79ol transformation is represented say by ~ol~/V(/Z)q and 
the equivalent to 7902 by 79o2]/V(e)p, we have 
W ' - -  12)ol W(lZ)q and W "-I = 79oEW(8)p. Then, accord- 
ing to (2), among the equivalent descriptions of 7903 there 
is one corresponding to W ' .  

(c) The high-colour-symmetry case. The symmetriz- 
ing group S is isomorphic to (3(3)2(2)) (6), or (3(3)m(2)) (6), 
involving the crystal permutations 

(( 2 /z e ' 2 e ' /z 2 ' 

2 e # ' 2 /x ' /.t e " 

Such symmetrization is a combination of the previous 
two cases where there are both mixed operations and 
120 ° colour-exchange operations. Obviously, this case 
can occur only in homophase VCTs. The symmetrizing 
group S is isomorphic to the matrix group 
{~Z-, ~ 1 ,  W2, W3, "}/Vt, Wit-l} • The second-order mixed 
operations of S are chosen from the set of antisymmetry 
operations of the three embracing groups ~¢(P)1, ~¢(P)2, 
~'(P)3. The appropriate theorem for this case is 

Theorem 5: High-colour symmetry will exist in the 
tricrystal pattern of a homophase VCT if, and only if, 
among the set of equivalent descriptions of the 
transformation 79o~ there exists one corresponding to a 
120 ° rotation, represented say by 79olW(lZ)q and, at the 
same time, there exists a second-order VGE [represented 
by W(2)v fl such that 

W('~')v,r(79olW(lZ)q)~/~('~); 1 = (~olW(/Z)q) -1" 

The above expression gives the representative of the 
120 ° rotation among the set of equivalent descriptions of 
the transformation 7902 [note that since we have a 

homophase T J, there always exists a symmetry operation 
of the red crystal such that W ( e ) w - - W ( 2 ) j .  Then, 
when expressed to the white coordinate frame, 
14/3 = W(2)v~ and I V " =  79olW([Z)q. The matrices 14/l, 
14/2 can be found from the multiplication table of the 
isomorphic to S matrix group. Also, using this table, 
theorem 5 can be proved. It can be seen that, if the above 
expression is valid, the group S always exists for the 
given operations. On the other hand, if this expression is 
not valid, the group S can only exist if W(2)v ~ does not 
represent a VGE, which is against our initial assumption 
for the occurrence of mixed symmetry. 

The geometric element of the VGE must be a 180 ° 
axis perpendicular to the 120 ° axis or a mirror containing 
the 120 ° axis. Also, high colour symmetry can easily be 
identified if a second-order VGE can be found for which 
the corresponding geometric element has an angle of 60 ° 
to the element corresponding to one of the second-order 
antisymmetry operations of ~ ' (P)I  [or ~'(P)2].  A high- 
colour-symmetry case is given in §4.3. 

Using the above rules, the colour group ~'(P)(tricrystal), 
of the tricrystal pattern can be found. As mentioned 
earlier, the suppression of colour symmetry can give rise 
to a second class of equivalent tricrystal patterns, i.e. 
patterns related by antisymmetry operations of @'(P)I, 
~ '(P)2 or (gO(p)3, which do not belong to 
l~(p)(tricrystal ). This situation is analogous to that of 
antisymmetry-related bicrystals (Pond, 1989) and can 
occur only in homophase tricrystals. For example, 
consider a VCT in which an antisymmetry operation of 
~ ' (P) I  is not present in ~'(P)(tricrystal)" Then this 
operation relates two tricrystal patterns obtained using 
the same VGE, except that, in the first, the VGE is an 
operation of the white crystal while, in the second, the 
VGE is an operation of the black crystal. Similarly, an 
antisymmetry operation of Igf(p)2 relates two tricrystal 
patterns where, in the first, the VGE is in the white and, 
in the second, in the red crystal. An analysis using such 
variants is given in §4.1.2. 

2.5. Symmetry of the tricrystal complex 

After the embracing group of the tricrystal has been 
found, the second dissymmetrization step must follow in 
the procedure of obtaining the symmetry of a tricrystal. 
This involves the introduction of the space groups #(2)  s 
and ~(/z) s ---- ~(e)  s of the respective crystal structures, as 
well as the introduction of the rigid-body translations of 
the three bicrystals [i.e. we consider the transformations 
791 = (PI,Pl) ,  792 = (P2,P2), ~ = (P3,P3)]. The three- 
dimensional composite formed by the interpenetration of 
the three crystals will be termed the tricrystal complex. 
Any ordinary operation of ~(P)(tricrystal) that is not 
common in the groups of all three dichromatic 
complexes is suppressed so that ~(C)(tdcrystal ) __C 
~-(P)(tricrystal)" AS the ordinary symmetry is reduced, the 
colour symmetry must be reduced accordingly. The 
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dissymmetrization at the complex level gives us 
information on equivalent tricrystals and TJ defects 
introduced due to the suppression of symmetry because 
of the material's non-symmorphic and/or non-holosym- 
metric structure. 

Let us assume initially a tricrystal complex with 
no rigid-body translations between the three crystals. 
Such a complex will be termed holosymmetric since it 
exhibits the highest possible symmetry for a complex. 
Then, we have  ~(C)(tfi.crystal)~(C)lN~(C)2. For 
VCTs, this relation is wri t ten  ~(C)(tricrystal ) 
~(c)IAW(2)v~(c)IW(2)~ 1, where now the VGE 
W(2)v" may be a non-symmorphic operation, i.e. the 
matrix representative can be in general kV(A)v ~ = 
(w(~)v, w(~)v~). 

The rigid-body translations P l, P2, P3 among the three 
crystals have to be introduced independently from one 
another (based on experimental observation), since they 
are due to interfacial energy minimization and may not 
be related. In other words, it cannot be known before- 

planar 
:i i  o oct 

tricrystal 
complex 
variants 

(a) 

/ / 1  J interracial 
isloeations 

~ ,q r/,.............. ,, tricrystal 
complex 
variants 

(b) 
Fig. 2. Schematic drawing showing two possible ways of coexistence of 

tricrystals originating from variants of one tricrystal complex within 
the same tricrystal pattern. In (a), the complex variants are separated 
by a planar defect (shaded) that is introduced in order to compensate 
for the suppression of symmetry due to a material's non-holosym- 
metric crystal structure. In (b), the variants coexist through the 
introduction of frustrated symmetry dislocations placed in order to 
compensate for the suppression of symmetry due to the material's 
non-symmorphic structure. The dislocations must form a node on the 
TJ line. 

hand whether mutual accommodation of the rigid-body 
translations exists. It may be possible to have a partial 
dislocation along the TJ line which accommodates 
incompatible rigid-body translations. By using transfor- 
mations of the form ~ = (Pi, P/), further dissymmetriza- 
tion may be obtained. Then, an operation that is 
suppressed in any of the three dichromatic complexes 
is also suppressed in the tricrystal complex. 

Through dissymmetrization, one can identify all 
tricrystal complex variants within one tricrystal pattern 
by performing the coset analysis o f  ~'(P)(tricrystal) with 
respect to ~(C)(tricrystal ). In a polycrystal, all or some of 
these variants may be found and their coexistence is 
possible. For example, in a non-holosymmetric crystal, if 
two tricrystal complex variants coexist, a planar defect 
(such as an antiphase boundary, inversion domain 
boundary, twin or translation-twin) must be introduced 
between them (Fig. 2a). The character of the defect is 
defined by the suppressed operation relating the variants. 
Also, in the case of suppression of non-symmorphic 
symmetry, two tricrystal complex variants will coexist 
via frustrated symmetry interfacial dislocations (Pond, 
1989) forming a node (Fig. 2b). A combination of the 
cases of Figs. 2(a) and (b) is also possible. Note that a 
suppressed operation relates tricrystal variants only if it is 
acted upon all three crystal components. By combining 
tricrystal pattern variants with tricrystal complex var- 
iants, one can enumerate the ways for constructing a 
given TJ and characterize the geometrically necessary 
defects between equivalent tricrystals. 

For the case of VCTs, the complex level is additionally 
important for the a priori characterization of the 
geometrically necessary defect content along the junction 
line. This is defined by the VGE. If the VGE is a non- 
symmorphic operation, then a frustrated symmetry partial 
dislocation will exist between two interfaces obtained 

rd bicrystal 

~ planar 
( le IeCt  

Fig. 3. Schematic drawing of a VeT where the two orientation variant 
bicrystals are related by a VGE that is present in the lattice, but not in 
the actual crystal structure because the material is non-holosym- 
metric. Then, in order to conserve the interfacial structure when 
going from bicrystal 1 to bicrystal 2, a planar defect is geometrically 
necessary (shaded). 
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from orientation variants of one dichromatic pattern, 
providing the translation part of the operation is not 
invariant with respect to the transformation P~ (Pond, 
1989). The existence of the partial dislocation is 
imperative unless the distortion can be absorbed by the 
third bicrystal [in which case, the third bicrystal is a 
rotation-translation boundary (Guymont, Gratias, Portier 
& Fayard, 1976)]. In addition, if the white crystal is non- 
holosymmetric, the VGE may be an operation leaving 
invariant the lattice but not the structure (e.g. as in 
ordering). Then a planar defect must emanate from the TJ 
line (Fig. 3). If analogous suppression of symmetry 
occurs in ~(#)s  _ ~(e)s, the planar defect character may 
continue along the third boundary. This will be illustrated 
in ~4.1.1. 

2.6. Symmetry of the tricrystal 

We have reached the final step in the dissymmetriza- 
tion procedure, where the symmetry, of the tricrystal itself 
is obtained. The tricrystal is obtained from the tricrystal 
complex in a manner analogous to the bicrystal case. 
This means that, in an imaginary process, the three 
interfaces are introduced in the complex. Then, one 
crystal is left between each pair of interfaces and the 
other two are discarded. So we now have, instead of the 
one invariant plane condition (for the case of one 
bicrystal), the conditions for (i) an invariant line (i.e. the 
TJ line), and (ii) the invariance of three planes (for the 
three bicrystals). If the TJ line is a rational direction and 
the translation operation along it is coincident, then the 
tricrystal symmetry is described by a rod group. If the 
direction is irrational, then the tricrystal group is a rosette 
group. 

Each participating bicrystal is characterized by two- 
dimensional symmetry. The only permissible operations 
in a bicrystal group are ordinary operations correspond- 
ing to rotation axes and mirrors perpendicular to the 
interface, as well as antisymmetry operations correspond- 
ing to 2' axes and anti-mirrors parallel to the interface, 
and 4' and 6' axes perpendicular to the interface (Pond & 
Vlachavas, 19_83). The anti-inversion 1' and the anti- 
rotoinversion 3' are not permitted for relative rotations 
(R ~ I) between two crystals, as can be seen from the 
point groups that have been given in §2.1. 

Let the interfaces intersect along the common direction 
r. Their introduction breaks any ordinary rotation 
symmetry of the tricrystal complex along r. So the only 
ordinary operation that can be common to all three 
bicrystal groups corresponds to a possible coincident 
mirror perpendicular to r. In other words, if such an 
operation exists in two bicrystal groups, it must also exist 
in the third. The interfaces themselves can have any 
orientation, although it is common that antisymmetry 
mirrors are the energetically preferred orientations. 

In addition to an ordinary mirror, a tricrystal may 
possess colour symmetry. In the mixed symmetry case, 

the tricrystal has colour symmetry if the geometric 
element corresponding to a mixed-symmetry operation is 
parallel to the interface of the bicrystal for which this 
operation is an antisymmetry operation and, at the same 
time, this operation relates the orientations of the other 
two interfaces. In the colour-exchange symmetry case, 
the tricrystal has colour symmetry if r coincides with the 
120 ° colour-exchange axis and at the same time the 
orientations of the three interfaces are related by the 
colour-exchange operation. Finally, in the high-colour- 
symmetry case, the tricrystal can exhibit colour-exchange 
symmetry or mixed symmetry or both. A tricrystal will 
have both types of symmetry if r coincides with the 120 ° 
colour axis and the second-order mixed symmetry 
elements at 120 ° angle with each other are parallel to 
the interface planes. 

Any operation of ~t(C)(tricrystal ) that does not belong to 
the tricrystal's group relates tricrystal morphological 
variants within the same complex. In particular, if such 
an operation corresponds to a geometric element along 
the TJ line, it leaves this line invariant and so relates 
tricrystal variants around it. This will be illustrated in 
§4.1. 

3. The embracing group of the third bicrystal in 
variant constituted tricrystals 

As mentioned in the Introduction, the task at hand in this 
section is to determine the symmetry constraints imposed 
on the embracing group of bicrystal 3 in VCTs. 
According to the principle of symmetry superposition, 
we have ~(P)3---~(P)(tricrystal), i.e. the intersection 
group may be further symmetrized so that the third 
embracing group can contain additional symmetry 
operations. This can only be done by an appropriate 
symmetrizing group. However, the operations of the 
symmetrizing group cannot belong to either ~(P)I  or 
~(P)2 because, according to theorem 1 (or theorem 2), 
they would then belong to ~i(p)(tricrystal ). So they must be 
chosen from the set { ~ i ( / z ) - ~ ( p ) l - ~ ( P ) 2 }  [or, 
equivalently, {~(e) -- ~ (P ) I  -- ~(P)2}]" The matrix 
representatives of operations in the symmetrizing group 
must satisfy the condition W(/z)i = Co~:W(e)jCo 1, where 
Co~ = ~ollW(2)v 79ol. For point symmetries in particular, 
if ri, rj are the orientation vectors of the corresponding 
geometric elements, then W(2)v Plr;  = P~r/. 

• • I r . a 

The &chromatac group ~ (P)3 is a factor-two super- 
group of ~(P)3- In order to find the antisymmetry 
operations of ~'(P)3, we employ the rules of Vlachavas 
(1984). Then Co,, [given in (3)] represents an anti- 
symmetry operation of ~t(P)3 (i.e. CoK = W3) 
if Co2~=7~ollW(2)v2T'ol represents an operation of 
Q(P)3-----~(P)3" However, as we have mentioned 
(theorem 3),_whenever the ~(P)(tricrystal) symmetry is 
greater than 1, the VGE is of second order. For such a 
VGE, C2¢ = (I,o), i.e. Co,, represents an antisymmetry 
operation of second order. Then, ~'(P)3 is the extension 
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of l~(p)3 by a symmetrizing group containing the 
identity and this second-order antisymmetry operation. 

It remains to find the conditions for antisymmetry to 
exist when the VGE is not of second order [in which case 
l~(p)(tricrystal ) ~ i ] .  Then, Co~ corresponds to a 60, 90 or 
120 ° rotation. So, among the equivalent transformations 
~om "-" ~oK~)(E)m, we need to find a second-order one. It 
is easy to see that Corn will be of second order if, and only 
if, VV(e)m is also of second order (Landau & Lifshitz, 
1952). Moreover, the axis or mirror normal correspond- 
ing to l/V(e)m must be perpendicular to the axis of CoK. If 
say t'V(s) m expresses a 180 ° rotation, then so does Com. 
The axis of Corn is also perpendicular to the axis of Co~ 
and has an angle to the axis of t'V(E)m equal to half the 
rotation angle of Co~. Similar arguments can be written 
for the case when l'f(e)m corresponds to a mirror if 
instead of axes the mirror-plane normals are used. We 
note that, in general, antisymmetry in the third embracing 
group is possible even if it does not exist in the 
dichromatic pattern orientation variants (e.g. as in 
heterophase TJs). 

Before closing this section, a case of particular 
importance must be distinguished. When Q(P)I is 
invariant under the VGE (i.e. ~(P)I = 
W(A)~(p)lW(2)~l),  we have ~(P)3 D Q(p) l  N 
Q(P)2 ---- ~It(P)I. As mentioned in §2.1, this is the most 
usual case w h e n  l~(p)(tricrystal ) contains operations other 
than the identity and the inversion. Then, for one of the 
transformations Pox, we can have 

~9o2 = ~/V('~)v~ol}/V(E); 1 =  Po l  l" (4) 

Hence, in the two dichromatic pattern orientation 
variants, the transformations Po have opposite senses. 
This is interesting since now the coordinate transforma- 
tions of the third dichromatic pattern do not intrinsically 
depend on the VGE. Indeed, one of the equivalent to CoK 
transformations is Po~. Then, it is possible that 
79o21W(2)v Po~ = 142(2)v . So, when ~(2)  ---- ~(/z)  _= 
(/It(e), the VGE can be one of the extending elements in 
the symmetrization of ~ (P) I  to ~(P)3.  It can be proven 
(see Appendix A) that this is possible if, and Only if, Pol 2 
represents an antisymmetry operation of ~'(P)3. So the 
procedure for obtaining ~ ' ( P ) 3  is simplified. 

In order to find the symmetry group @'(c)3 of the 
dichromatic complex, we need to dissymmetrize ~ ' ( P ) 3  

by considering the space group @(lz) s = @(e) ~ and the 
rigid-body translation P3, as described in §2.1. Finally, 
the two-dimensional bicrystal symmetry is found by 
introducing the interface orientation. 

In concluding this section, we remark that, as has been 
shown, the symmetry of the third bicrystal in VCTs is 
significantly constrained by the VGEs relating the 
orientation variants. This information can be employed 
to design VCTs in which the third bicrystal will be a 
desired bicrystal characterized by particular symmetry 
and antisymmetry operations. This will be demonstrated 

in ~4.2. The method of Dahmen & Thangarai (1993) can 
be used to fabricate such a bicrystal. In this method, a 
VCT is obtained by the coexistence of two variants of an 
epitaxic interface. 

4. Examples 

4.1. Variant constituted tricrystals of first-order twins in 
fc.c. polycrystals 

We first examine the commonly observed 273-273-I79 
VCTs. This system is useful for a first illustration of the 
dissymmetrization procedure introduced in this work, 
because its simplicity leads to a direct understanding of 
the results obtained. Consider such a tricrystal composed 
of 273{111} bicrystals in f.c.c. The f.c.c, structure is 
chosen in this first approach because it is both 
symmorphic and holosymmetric [@(j) = ~( j )s  = 
Fm3m, j = 2,/z,e], which means that there are no 
complex variants. Also let us make the hypothesis that 
there are no rigid-body translations involved in the TJ 
that could complicate the analysis. Then the symmetries 
for the 273 are @'(P)I ----~'(c)1--P6'/m'mm' and the 
bicrystal symmetry is ~ ' ( b ) l - p 6 ' m 2 '  as commonly 
known. The ordinary symmetries are ~(P)I  -- 
@(C)l - - P 3 m  and ~(b)l =_ p3m, respectively. For the 
tricrystal pattern and complex, the ordinary symmetry is 
l~(p)(tricrystal ) ~ l~(C)(tricrystal ) ~ C2/m. The existence of 
common intersection symmetry greater than 1 is possible 
because there are second-order VGEs. Also due to these 
elements, there exists a symmetrizing group S------2', 
where the mixed symmetry operation introduces the 
permutation (~ ~ ~), i.e. we have a mixed-colour 
symmetry case. Therefore, l~'(p)(tricrystal ) 

~@ ®~ ~ ~ ~" ~@ Q~ ~ "~ m / 

o I 

__J° 
B1 ! 

Fig. 4. Tricrystal complex for the I;3-•3-•9 tricrystal. The three 
crystal components are coloured white, black and grey, respectively. 
The mixed symmetry elements are primed. In this example, these 
elements relate the black and grey atoms while leaving the white ones 
invariant. The orientations of the { 111 } planes where I~3 twins occur 
are also given. The projection direction is (011). Two layers of atoms 
are shown. Large circles denote atoms at zero height. Small circles 
denote atoms at height a2t/2/4 (where a is the lattice parameter). 
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~'(C) tric-stal' ~ Cm'mm'. This is also the symmetry of 
~'(P~3 ~ ~/(c)3 since there is no further symmetrization. 
The tricrystal complex is given in Fig. 4. 

From the above dissymmetrization, we conclude that 
six tricrystal patterns can be constructed among the four 
orientation variants of 3m in m~3m, all of which are 
crystallographically equivalent. Also, if we keep one 
dichromatic pattern invariant, three equivalent tricrystal 
patterns can be constructed, since there are three variants 
of Q(P)(tricrystal) in Q(P)n. However, there are addition- 
ally three variants of Q(p)ltrierystal ) related by the 
antisymmetry operations of Q (P)I, since these opera- 
tions do not belong to the embracing group of the 
tricrystal. Such variants introduce antisymmetry-related 
tricrystal patterns. 

Finally, for a { 122} orientation of the 279 interface, the 
tricrystal has one-dimensional symmetry described by 
the rod group p2'mm', where m corresponds to the 
perpendicular to the TJ-line mirror and the translation 
vector is ½(011). Hence, there are two morphological 
variants of the tricrystal inside the tricrystal complex that 
are both around the TJ line and are related by a 180 ° 
rotation (Fig. 5). 

A number of interesting results can arise by consider- 
ing the coexistence of tricrystal orientation variants. Two 
cases are given below. 

4.1.1. Coexistence of tricrystal variants in an assem- 
bly of octahedral morphology. All tricrystal variants that 
are related by ordinary symmetry can be pictured in an 
octahedral assembly in 273 orientation with the surround- 
ing matrix, having faces of {111 } type. This configura- 
tion is shown in Fig. 6. 279 twins emanate from the 
junctions of the 273 bicrystals, thus forming 12 VCTs. 
The tricrystals coexist along the nodes of the octahedron. 
The 279 twins may emanate either into the octahedron or 
into the matrix. Such an assembly would be difficult to 
observe experimentally and probably is energetically 
unstable. However, a half-octahedral arrangement of 273 
twins has been observed in epitaxic SiC on (001) Si 
(Stoemenos, 1994). This is a case of multiple micro- 
twinning and the first-order twins must be related by 279 

E3 E3 e O  e • • -  • • • - - •  • • • 

• . U O °  0 /  . . . .  N ° g o  • • 
° O o • g ( O  • • • • ~ ° o • ° 

O • o O J{  • • • • • • "~aL ° O • ° 
E 9 °  o i . . . .  o ~ -  0 -  • • • • • • • " ~ J , - : - ~ - - * - ~  E 9  

• • • • • • • • • 

• . o . - X ' . . . . . ' , / . " . " . - -  
" . • ? o \  . . . .  / ' • ' _ • ' • -  

O o • • o - O  ~ • • • • O - o  • • • 

• " E3 E3 " ° 
Fig. 5. Equivalent-by-symmetry tricrystals around the same TJ line 

originating from one tricrystal pattern in the ,r~3-/?3-E9 CSL case. 
The tricrystals are related by the 180 ° symmetry operation around the 
TJ line. The projection direction is (011). Two layers of atoms are 
shown. Atom heights are as in Fig. 4. In this, as in all following 
figures, the interfacial structures are shown unrelaxed and no rigid- 
body translations between the crystals have been considered. 

microtwins. However, since SiC has the non-holosym- 
metric sphalerite structure, the octahedron will be polar 
(Holt, 1988). This means that the polarity of the first- 
order twins will be inverted in each face unless an 
inversion domain boundary emanates from each junction. 
The inversion character is then extended in the 279 
bicrystals. One such TJ is shown in Fig. 7. This figure is 

E9 

matri 
a t E 3 ~  

orientation 

Fig. 6. Hypothetical octahedral assembly of tricrystai variants. The 
assembly is in 273 orientation with the surrounding matrix crystal. 
The interfaces between matrix and inclusion are (111) twins. E9 
twins are necessary for the coexistence of the /?3 twins and these 
have been taken in the drawing to emanate from their junctions into 
the octahedron (shown by shading). The figure illustrates the 

• coexistence of all variants of the /73-/73-E9 tricrystal that are 
related by ordinary symmetry. 

I ;9  

I D B  

Fig. 7. E3-/?3-E9 tricrystal in the sphalerite structure. Colouring of the 
atoms distinguishes the two atom types composing the sphalerite 
crystal basis. Bonding between the atoms is also shown for clarity. 
Since the /?3 bicrystals are related by a VGE that is present in the 
lattice but not in the crystal structure (non-holosymmetric crystal), an 
inversion domain boundary (IDB) must emanate from their junction 
in order to preserve the polarity in the twins (shown dashed). As this 
is a homophase VCT, atoms of the same type come opposite one 
another in the /?9 bicrystal, i.e. the inversion domain character is 
extended in the Eg. The projection direction is (011). Two layers of 
atoms are shown. 
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in accordance with Fig. 3 and the analysis of §2.5. In 
general, polycrystals can be modelled using various 
assemblies of tricrystal variants if we choose the degree 
to which symmetry constrains the system. 

4.1.2. CSL TJs with multiplicities related by a power 
law. Antisymmetry-related 273-173-179 tricrystal variants 
around the same line can be used to construct a priori the 
17i = 3" CSL tricrystals. Such an analysis can be 
generalized for all 1 7 i - f "  CSL tricrystals (where f, n 
are integers). 

We will consider only the simple case of 173-179- 
1727a tricrystals in detail. Such a tricrystal can be 
considered as the combination of two antisymmetry- 
related 173-173-2:9 tricrystals. The model is shown in 
Fig. 8. The components (/zl) and (/x2) are in a 1727a 
orientation relation. By superimposing the two tricrystal 
patterns, we can choose the appropriate crystal compo- 
nents to create the 173-179-1727a tricrystal. It should be 
emphasized that no physical meaning can be currently 
ascribed to this model since it is only a geometric 
construction. Using the sequence of coordinate transfor- 
mations, we can study the properties of this new 
composite. It is easy to conclude that the common 
ordinary symmetry is the same as in the VCTs. Also, this 
tricrystal has no colour symmetry. We can combine three 
VCTs to construct a 173-I727-I781 tricrystal and so on. 
In general, it can be said that antisymmetry appears to 
play an important role for the modelling of interfacial 
connectivity through TJs. 

4.2. Fabrication of a particular bicrystal by epitaxic 
deposition 

This example serves as an illustration of the 
methodology developed in §3 for obtaining the symmetry 
of the third bicrystal in VCTs. It has been shown that 
epitaxy can be used for the fabrication of bicrystals of 
particular orientation in the epitaxic deposit (Dahmen & 
Thangarai, 1993). It is known that the relative rotation 

Z9 (~) Z3 (~) . , ~ o . o . o . o . o . ~ o  
o ~ , x -  • • • • • .  • • o ~ .  ° • • 

• ° a ~ O  ° O ° O ° O ° O ° ~ O ° • • 
• " . ' . ~ ' - ' , , z '  " ' ' " ~ . ' . "  • 

(J~l) • • • T . . . . . . . . .  ~ o  a ° • 
• • - o  /d o • • • • • • * • • o " ~ o  • 

• ° o  ? • • • • • • • • • o _ o  o _ e ~  o 
° o  )j ¢ e Q e e , o  0 • e • • • • • I ~ 

Z ~ "  • "  • "  • "  • "  • "  • • • "  o " Z 9  

(~) 
Fig. 8. Geometr ica l  model  showing the coexis tence of  two ant isym- 

metry-rela ted ~3-273-Z '9  tricrystals in f.c.c. Ant i symmet ry  related 
means,  in this case,  that the two ho losymmet r ic  tricrystal patterns are 
variants  related by an an t i symmetry  operat ion o f  the (2)- (e)  
d ichromat ic  pattern that does not be long to the tricrystal embrac ing  
group.  They  are related by the { 111 } ant i -mirror  o f  the c o m m o n  ~73 
bicrystal .  The  crystal  componen t s  ( /z l)  and (/z2) are in a I727a 
orientation. The  project ion direction is (011). T w o  layers o f  a toms 
are shown.  A t o m  heights are as in Fig. 4. 

Table 2. Appropriate substrate orientations and relative 
rotations so that a 173 twin can emanate in the epitaxic 
deposit for the case of cubic-on-cubic material epitaxy 

The relative rotations between substrate and epitaxic crystal are given in the form 
of sets of parallel axes (instead of axis/angle pairs) in accordance with common 
practice. The corresponding VGEs and tricrystal symmetries are also given. 

Suitable 
Second- substrate Tricrystal 
order orienta- Relative rotations (Rl) between pattern 
VGEs tions substrate and epitaxic crystal symmetry 

(110) {llO},{hhk} {(llO)e//(ll_O)s,(lll)e//(llO)s,(ll2)e//(OO1)~} 2/m 
(OO1) {O0_l},{hkO} {(llO)eff(llO)s,(ll2)e//(ll_O)s,(ll_l)eff(OO1)s } (m'mm') 
(110) {llO}.{hhk} ( l l2)e/ / ( l l2)~.( l l l )e / / ( l lO) , . ( l lO)e/ /Oll)  ~ l (T /m ' )  
(110) {ll0}.{hh_k} (ll l) , / /(l l l)~.(l12)~]/(llO)s.(llO)e]/(l12) , 3(3m' )  
(llO) {llO},{hhk} (l13)eff(l13)s,(211)eff(llO)s,(471),ff(332)~ l_(2'/m') 
(001) {OO1},{Ohk} (120)e//(120)~,(211)~//(001)~,(215)~//(210)~ l (2'/m') 

between the substrate and the epitaxic deposit depends 
on a number of factors such as the minimization of the 
lattice mismatch. So it is useful to know a priori which 
relative rotations and substrate orientations can be used 
to construct a given bicrystal. Then, appropriate substrate 
materials can be chosen. This is illuslrated in the 
following problem. 

In cubic-on-cubic material epitaxy, we seek to 
determine the appropriate substrates and relative orienta- 
tions so that a E3 twin can appear in the epitaxic deposit 
emanating from the heterophase boundary. In order to do 
so, we need to determine the rotations R 1 for which the 
composite operation is one of the second-order anti- 
symmetry operations of 173, i.e. along {111}, {121}, 
{121} or {112}. This is straightforward in this case, since 
we find that the composite operation can only be of the 
form of (3), where the VGE is one of the cubic 
structure's second-order operations. Using these ele- 
ments, the relative rotations are determined. Then the 
substrate orientations are found by noting that the 
geometric element of the VGE must be perpendicular 
to the substrate so that it conserves its orientation. The 
results are summarized in Table 2. From this table, we 
observe that in all cases we have, in the third bicrystal, 
further symmetrization from the common symmetry of 
the _tricrystal. Additionally, we observe that, for the 90 ° 
(112) and the 30 ° (111) rotations, the VGEs are also 
symmetrizing elements of ~(P)(tricrystal), i.e. we are in the 
special case of §3. 

4.3. Variant constituted tricrystal exhibiting high colour 
symmetry 

For the sake of completeness, we give here a 
theoretical example of occurrence of high colour 
symmetry for the I79 orientation in f.c.c. (Fm3m). For 
this CSL, we observe the existence of a second-order 
VGE corresponding to a geometric element of {101} 
orientation that has an angle of 60 ° to the antisymmetry 
elements of {411} orientation. So, according to theorem 
5, we can construct a high-symmetry VC_T_ where 
the 120 ° colour-exchange axis is along (151). The 
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embracing group of this composite is ~I(p)ttricrvstaD 
~t(C)ttricrvstaD ~ / 9 ( 3 ( 3 ) 2 ( 2 ) )  (6) ~ / 9 i  ~ (3(3)2(2))(6): " The 

" " " 6 symmetry of the tricrystal is p(3(3)m(2)) () [the super- 
scripts denote the colour permutations (Shubnikov & 
Koptsik, 1974)]. Such a TJ is shown in Fig. 9. In this 
composite, the well known CSL multiplication rule is not 
valid (this rule would have predicted a Z:9-Z:9-,U81 
combination). Out of the ~0--66 possible tricrystal 
patterns constructed using E9 bicrystal orientation 
variants, only 12 can give Z9-Z9-Z:9 tricrystals. 

5. Conclusions 

Whenever, in a high-symmetry medium such as a crystal, 
an effect is observed where the symmetry of the medium 
is reduced, an appropriate dissymmetrization should be 
sought. Such an effect can be a defect, an interface or a 
TJ. Dissymmetry leads to a number of equivalent effects 
that can occur in the medium and so it must be 
distinguished from asymmetry. 

The above fundamental principle has prompted the 
investigation of the crystallography of TJs that has been 
presented in this work. The TJ has been treated as a 
three-component composite but the analysis has followed 
the same steps as those used in bicrystallography. The 
ordinary symmetry of a tricrystal has been defined by the 
addition of the dissymmetries of the participating 
bicrystals, in accordance with the basic principle for 
the superposition of symmetries. This symmetry ex- 
presses the invariances of any physical property in the 
composite. In addition, colour elements can be intro- 
duced that interrelate the components. Such elements 
express the equivalences in the system. Special attention 
has been paid to the information that can be obtained a 
priori and on the consequences of dissymmetrization on 
polycrystal topology and TJ defects. 

Particular emphasis has been placed on VCTs since 
these are the most symmetrical of all tricrystals and 
certainly the most important ones. Their significance is 
easily understood if  one considers their frequent 
occurrence in processes such as crystal growth, pre- 
cipitation processes and phase transformations in general 
etc. It has been shown that, in a VCT, the VGEs are 
crucial in determining the symmetry of the composite. 

The analysis gives the experimentalist the opportunity 
to investigate the relationships of the three crystals. This 
could not be done easily in a graphic manner, since the 
sense of three-dimensional space would be lost. In 
addition, by using the given information, one could 
design the epitaxic deposition on special substrates so 
that particular bicrystals exist in the epitaxic deposit. So 
the analysis is useful for interface engineering. This is 
why the work has also focused on the symmetry of the 
third bicrystal in VCTs. 

A number of appropriate examples have been given to 
illustrate the application and usefulness of the analysis. 
In §4.1, it was shown how the dissymmetrization 
procedure can provide a useful tool for predicting cases 
of interface connectivity. In this example, it was 
proposed that certain tricrystals, such as tricrystals 
composed of CSL bicrystals related by a power law, 
can be modelled using broken antisymmetry in a 
polycrystal. §4.2 gives a case of interface design by 
epitaxy. Finally, ~4.3 illustrated a case of a VCT 
exhibiting three-colour symmetry. 

The authors thank Professors Bleris, Koptsik and Pond 
for valuable discussions and comments. This work has 
been supported under EEC contract no. SC1"-CT91- 
0703. 

APPENDIX A 

Let ~(2)  = ~(/z) = Q(e) (i.e. there is a black as well as 
qt • • a red operation such that, when referred to their 

• • respective coordinate frames, we have W(lz)i=_ 
• • • • W(e) j -  W(A)v" for the matrix representatives). Then, 

• . . • (4) can always be re-written as 
• o e • 

S o  • e  • • • • ° • ° ° • ° • For (5) to be valid, the VGE can only be a second-order 
• ° • • ° • • • symmetry operation leaving invariant the common 

• ° • ° ° • ° • • , • • / * ' - , ,  • • . • relative rotation axis corresponding to 7:'ol. From (5), 
• . • ~ , , , i  _ ~ • . • we have 

• O / ,  ~ • • • • e , , , ,~O • 

• " ~ / ~  0 0 O o O O O " ~ q ~  • • • ~ ~ • (W(~)vJ'o,W(;O~')(W(~o)vKPo,W(,~)7') 

• • = W(2)v 792,W(2)~' = Po~. (6) 

Fig. 9. E9-Z9-Z9 VCT showing high colour symmetry. The projection Let W(2)v, represent a symmetry operation of ~(P)3- 
direction is (i5i). A 120 ° colour-exchange axis is parallel to the TJ Then, 
line. Two layers of atoms are shown. Large circles denote atoms at 
zero height. Small circles denote atoms at height a/3 × 31/2. 2 -2 ' ~ o l W ( 2 ) v , ' P o l  = W i ,  (7) 
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where "~i represents a symmetry operation of I~(p)3. 
From (6) and (7), we have 

i.e. 7921 represents an antisymmetry operation of Q'(P)3 
according to the rules of Vlachavas (1984). 

Now let 7:'o21 represent an antisymmetry operation. 
Then, (7~21) 2 represents an operation of Q(P)3 c 
Q(/z) - Q(e). Then also (P021)Ew(A)v W(2)~ ~ represents 
an operation of Q(/z)---Q(e). But, using (6), we can 
write 

 ol ol 1 = 

However, since W(2)v" represents an operation of 
Q ( / z ) -  Q(e) so also does z -2 ~S)ol W(,~)v ~S~ol , i.e. W(2)v~ 
represents a coincident operation and hence an element 
of group I~(p)3. 
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